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INTRODUCTION 

There have been many conditions placed on graphs to ensure the existence of 
certain kinds of subgraphs, in particular, conditions on the degrees of vertices have 
been useful. The following result of Ore is an example of the use of such a degree 
condition. 

THEOREM A [YJ: If G is a graph of order n 2 3 such that the sum of degrees of 
any pair of nonadjacent vertices is at least n, then G is Hamiltonian. 

Gould and Jacobson introduced a neighborhood condition that was patterned 
after the Ore type of degree condition, and that also implies the existence of certain 
subgraphs. An example of a result using this condition is the following, which paral- 
lels the previously cited result of Ore. 

THEOREM B [3]: If G is a graph of order n 1 3 such that the union of the neigh- 
borhoods of each pair of nonadjacent vertices is of cardinality at least (2n + 1)/3, 
then G is Hamiltonian. 

Our purpose is to investigate the neighborhood condition of the preceding type 
needed to ensure a clique of a fixed order. If n = km, then the Turan graph [6] ,  
which is the complete k-partite graph, K,,,, m, _,,, m, does not contain a complete K,, , 
as a subgraph. However, for m 2 t 2 1, the union of the neighborhoods of any set of 
t independent vertices has precisely (k - 1)m = ( k  - l)n/k vertices. Therefore, the 
following theorem, which is the main result to be proved, is the best possible of this 
type. 

* To whom correspondence should be addressed 
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THEOREM 1 : Let k and t be fixed integers greater than or equal to 2. If any set of 
t independent vertices of a graph of order n > n,(k, t) has more than (k - l)n/k 
vertices in the union of the neighborhoods of the vertices, then G has a clique of 
order at least k + 1. 

NOTATION 

All graphs will be finite and without loops or multiple edges. Notation will gen- 
erally follow that of [4] unless otherwise stated. Some special notation and termi- 
nology will be introduced, and standard notation that is used extensively will be 
briefly described. For example, the complete multipartite graph with k parts each 
with m vertices will be expressed as K(k;  m), and the special case when m = 1, which 
is the complete graph on k vertices, will be expressed simply as K ,  . 

Let u be a vertex of a graph H. The neighborhood of u (the vertices that are 
adjacent in H to u) will be denoted by NH(u), or simply N(v)  when the identity of H 
is clear. If t is a positive integer, then H,,(t) will denote the graph obtained from H by 
replacing u with t independent vertices, each with the same neighborhood as v. We 
will say that H,,(t) is obtained from H by expanding the vertex v into t vertices. The 
graph obtained when each vertex of H is expanded into t vertices will be denoted by 
H(t). Therefore, if H has order h (the number of vertices in H), then H,(t) and H(t )  
have orders h + t - 1 and ht, respectively. Also, with this notation, Kk(t) = K(k;  t). 

The maximum number of edges a graph G of order n can have without having a 
copy of a graph H is the extremal number ex(n, H). Additional edges in G will 
ensure at least one copy, but possibly many copies of H. By nG(H) we will denote the 
number of copies of H in G, where H is considered as a labeled graph. If the order of 
H is p ,  then n,(H) 5 cnp for some c = c(H), because there are at most that many 
subsets of p vertices of G. If, on the other hand, nG(H) 2 c'nP for some c' = c'(H), we 
will say that H saturates G. 

We next carefully define the neighborhood condition that appears in the state- 
ment of Theorem 1, and is the basis of this investigation. 

DEFINITION: For fixed positive integers k and t ,  a graph G of order n satisfies the 
neighborhood condition N(k, t )  if for each set {xl, x2 ,  ..., x,} o f t  independent ver- 
tices, 

I {u NG(xi): 1 I i < t }  I > ( k  - l)n/k. 

PROOFS 

We begin with a restatement of the result to be proved in this section. 

TKEOREM 1: Let k, t 2 2 be integers. If a graph G of order n > no(k, t) satisfies 

It should be noted that a graph G of order n that satisfies the neighborhood 
edges. Thus, 

the neighborhood condition N(k,  t), then G contains a K k + , .  

condition N(k,  t) does not necessarily have more than ex(n, K,, 
Theorem 1 is not a consequence of the extremal result of Turan [6] .  
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The following lemma reduces the proof of Theorem 1 to proving the existence of 
an expansion of K,, namely a K(k;  t), instead of a K , ,  ,. 

LEMMA 1 : Let k,  t 2 2 be integers. If a graph G of order n satisfies the neighbor- 
hood condition N(k, t) and contains a K ( k ;  t), then G contains a K , ,  1. 

Proof: Let A,, A,, . . . , A, be the vertices in the k parts of the complete multi- 
partite graph K ( k ;  t), and let A be the remaining n - kt  vertices of G. We will 
assume that G does not contain a Kk+l,  and show that this leads to a contradiction. 

The vertices in each Ai are independent, and no vertex of A is adjacent to at least 
one vertex in each Ai (1 I i I t), since there is no K,+ in G. There is no loss of 
generality in assuming that there are I A l/k = (n - kt)/k = (n/k) - t vertices of A 
with no adjacencies in A,. Therefore, the t independent vertices of A, have a com- 
bined neighborhood of at most n - (n/k) vertices, which implies that G does not 
satisfy the neighborhood condition N(k, t). This contradiction completes the proof 
ofLemma 1. 

Our next objective is to show that a graph G that satisfies the neighborhood 
condition N(k, t) contains a K(k;  t). We will show something stronger, namely that 
K( i ;  t) saturates G for (1 I i I k). The following lemma will be used in an inductive 
proof of the preceding statement. Lemma 2, and its proof, are patterned after a 
result of Erdos and Simonovits in [2]. 

LEMMA 2: Let t be a fixed positive integer and H a fixed graph of order p .  If G is 
any graph of order n with 

nGW) = m, 

then there is a constant c = c(p, t) such that 

n,(H,(t)) 2 [ ( ~ m ' ) / ( n ( ~ - ~ ) ( ' -  ') 11 
for any vertex v of H. 

Proof: Let H' = H - u, and { H ; :  r E R }  be the copies of H contained in G. For 
each copy H ; ,  let L, be the vertices of G - H; that are adjacent in G to the neigh- 
borhood N&) of u in H i .  If I, = I L, 1 ,  then c,. I ,  = m. Each subset of L, with t 
vertices will give a copy of H,(t)  in G. Therefore, 

2 [c'(p, tXrn'/l R I f -  '11. 
Since H has order p - 1, I R I I c"nP- and 

n,(H,(t)) 2 [c(p, t )mf / (dp - ' ) ( ' -  1- 
This completes the proof of Lemma 2. o 

The special case of Lemma 2 when H saturates G gives the following two corol- 
laries, which are expressed in the form that we will apply them in the proof of 
Proposition 1. 
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COROLLARY 1 : If m = c'np, then nG(Hv(t)) 2 [ c ~ P + ' - ~ ] .  

COROLLARY 2:  If m = c'np, then nG(H(t)) 2 [ c n q .  

The proof of Theorem 1 will be complete with the proof of the following result, 
which states that K(k;  t) saturates any graph that satisfies the neighborhood condi- 
tion N(k, t). 

PROWS~ON 1: Let t 2 2, k 2 1 be integers and let G be a graph of order n, 
which satisfies N(k, t). Then, there exist positive constants c = ck., and c' = c;, such 
that 

n d K d  1 [en"] (1) 

and 

n,(K(k; t)) 2 [ c ' 4 ] .  

Proof: The proof is by induction on k with t fixed throughout the proof. For 
k = 1, both (1) and (2) are trivially true. We assume that (1) and (2) are true for 
k = r 2 1 and verify them for k = r + 1. Thus, we assume G satisfies the neighbor- 
hood condition N(r + 1, t). We can also assume that n is large, because appropriate 
choice of constants c and c' make the result trivial for small values of n. 

Since property N(r + 1, t) implies N(r, t), we have that both (1) and (2) are true 
for k = r, so G contains at least [ c W ]  copies of K(r ;  t). There are two types of 
copies of K(r;  t): there are those with no edges in each of their parts and those with 
at least one edge in some part. 

First consider the case of a copy of K(r;  t) with parts A,, A,, . . . , A,, each of 
which is independent. Let A be the remaining vertices of G. For each i (1 5 i 5 r), let 
B, be the vertices of A that have no adjacencies in Ai. Let B be the remaining 
vertices of A. The neighborhood condition N(r + 1, t )  implies lBil < I A l / ( r  + I), 
and hence 

IBI 2 lAl/(r + 1) 2 c"n 

for some positive constant c". Note that each vertex in B will give at least one copy 
of a K,, , in G using precisely one vertex from each Ai . 

If at least one half of the copies of K ( r ;  t) in G are of the first type, then there will 
&,at least [(c"n)(c'nri)/2] copies of a K,+ counting multiplicities. However, any 
such<, , can come from at most n"-' different copies of a K(r;  t). Thus G would 
contain a-t [(c"c'n'+')/2] copies of a K , , ,  in this case. 

We can noG&mnqthat at least one half of the copies of K(r;  t) in G are of the 
second type and have at least qne edge in one of their parts. Associated with each of 
the (c'n'7/2 copies of K(r;  t) of th%-s"typethere is a copy of K,+ in G. Also, any such 
K , , ,  will arise from at most nrl-'-' different copies of a K(r ;  t). Hence there are at 
least 

copies of a K,, in G. This verifies (1) for k = r + 1. 

k = r + 1. This completes the proof of Proposition 1. 
Since K(r + 1, t) = K,+l( t ) ,  Corollary 2 and (1) verify that (2) is true when 

0 
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The proof of Theorem 1 is an immediate consequence of Proportion 1 and 
Lemma 1. 

PROBLEMS 

There are numerous unsolved problems related to neighborhood conditions like 
the one just considered. In [3] and [4] neighborhood conditions for nonadjacent 
pairs of vertices are used to ensure the existence of certain types of subgraphs. 
Theorem B is an example of one of these results. It would be nice to replace each of 
these conditions by a neighborhood condition involving t independent vertices 
where t 2 3. Also, one can be concerned not with just the existence of a certain 
subgraph, but with how many subgraphs of this type there are. Proposition 1 is an 
example of a result of this type. 

Bondy and Chvatal considered a “degree” closure that generalized results of the 
type given in Theorem A. Does there exist a “neighborhood” closure analogous to 
the “degree” closure that would generalize the results using neighborhood condi- 
tions? 
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